Open Source Software Ecosystem for Cloud Observability: An
Overview and Trends

Gabriel Silva Fontes
g.fontes@usp.br
University of Sdo Paulo
S3o0 Carlos, Brazil

Abstract

Context: With the adoption of cloud computing and the evolution
of IT and software engineering practices, observability, the ability
to systematically measure and monitor software systems, becomes
a growing concern. Cloud computing is very heterogeneous, and
thus creating, maintaining, and observing systems built on it re-
quires integration of multiple tools. Open source software (OSS)
tooling emerged as a de-facto standard in multiple areas, including
cloud observability. The ecosystem formed by OSS observability
tooling is large and often difficult to navigate. Objective: The main
goal of this paper is to present the OSS Ecosystem formed by cloud
computing observability tooling, by providing an overview of the
main tools and identifying trends on their integration. Method: We
searched the literature for studies on cloud observability and used
an automated named-entity recognition (NER) method to extract
candidate observability tools from abstracts. We selected the OSS
observability tools according to well-defined criteria. Following
this, we used keyword matching on the tools’ source codes, reveal-
ing integration code, documentation, and other types of relations.
Results: As a result, we found 45 OSS observability tools and de-
rived quantitative measures on their relations to one another. The
tools serve different roles in observability stacks, with our results
serving as a proxy measure on how strongly they relate to one
another. Conclusion: We present an overview of different tools,
how frequently they appear, their functionality, and a visualization
of their relations. Some trends are identified, such as the centrality
of some tools (e.g. Prometheus), common stacks (e.g. ELK, TICK),
and outliers (Thingspeak). We discuss topics such as measuring
relations, standardization, proprietary lock-in, among others.

CCS Concepts

« Software and its engineering — Cloud computing; - In-
formation systems — Open source software; « General and
reference — Reliability; Metrics.

Keywords

Open Source Software, Cloud Computing, Observability, Mining
Software Repository

ACM Reference Format:
Gabriel Silva Fontes, Vasilios Andrikopoulos, and Elisa Yumi Nakagawa.
2026. Open Source Software Ecosystem for Cloud Observability: An Overview

This work is licensed under a Creative Commons Attribution 4.0 International License.
SESoS °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2395-7/2026/04

https://doi.org/10.1145/3786163.3788453

Vasilios Andrikopoulos
v.andrikopoulos@rug.nl
University of Groningen

Groningen, The Netherlands

Elisa Yumi Nakagawa
elisa@icmc.usp.br
University of Sdo Paulo
S3o0 Carlos, Brazil

and Trends. In 14th IEEE/ACM International Workshop on Software Engi-
neering for Systems-of-Systems and Software Ecosystems (SESoS °26), April
12-18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3786163.3788453

1 Introduction

Catalyzed by the revolution brought by the public cloud and the ad-
vance of modern IT practices, such as the Site Reliability Engineer-
ing concept [4] and the DevOps movement, systems administration
is shifting from operational into an engineering domain [4]. With
this shift, a need to systematically measure and monitor software
systems emerge that is known as observability. Observability is
a concept originating from control theory, meant to measure the
degree to which a system’s internal state can be inferred from its
output at any point in time [9]. Cloud observability, in turn, is the
degree to which (cloud) infrastructure, applications deployed on
this infrastructure, and their interactions can be monitored using
data such as logs, metrics, and traces [11].

Cloud computing is, by its very nature, a heterogeneous com-
bination of different platforms, software, and systems. Ranging
from on-premises infrastructure and traditional workloads, to a
multitude of different cloud providers and cloud-native container
orchestration, plus dozens of different configuration management
tools (with varying degrees of compatibility), the list goes on and
on. In this scenario, it is challenging to create, maintain, and ob-
serve systems that rely on such a diverse ecosystem. This diversity
makes the interoperability requirement critical [8] [7]. Open Source
Software (OSS) is a natural fit for this, as its effect on standardiza-
tion and commodification [12] forces cloud vendors to interoperate.
There are many cases where an OSS’ potential for interoperability
helped it become a dominant force in software engineering tooling,
including Docker/OCI, Kubernetes, Linux, Git, LSP, among others.
Cloud observability is no different, as we will discuss further in this
work.

Just as the cloud systems that it aims to observe, the OSS tools
used for cloud observability are similarly diverse and heterogeneous.
This is an ecosystem that includes tools for tracing, benchmarking,
logging, aggregation, storage, visualizations, alerting [4], with many
different tools being combined to create observability stacks that
are used in different contexts and business domains. Understanding
this ecosystem becomes crucial for both researchers in the cloud
computing domain, as well as practitioners looking to build more
reliable and observable cloud-based systems. This understanding,
however, is not just about which tools there are out there, but how
they integrate and which role they play in an observability stack.

While there is some non-academic effort to better understand
subsets of this ecosystem [1], current literature lacks a wider study
on the OSS cloud observability ecosystem. With that in mind, the

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786163.3788453
https://doi.org/10.1145/3786163.3788453

SESoS 26, April 12-18, 2026, Rio de Janeiro, Brazil

main goal of this paper is to present an overall view of the OSS
tooling ecosystem used for cloud observability. To achieve our goal
and identify trends in this field, we defined two research questions
(RQs):
e RQ1: What are the most relevant OSS tools in cloud observ-
ability stacks?; and
e RQ2: How are OSS tools combined to form cloud observabil-
ity stacks?

Following this, we searched the scientific literature and located
3068 studies, from which, through an automated extraction followed
by manual selection, we identified 45 OSS observability tools. As
a main result, we observed the centrality of some tools, and tools
that cluster together. We intend that the overview presented in this
paper can bring implications for both practitioners and researchers.

The remainder of this paper is structured as follows: Section 2
outlines the research method; Section 3 reports the main results;
Section 4 presents our main findings, threats to validity, and future
work; Section 5 concludes our work.

2 Research Method

Figure 1 provides an overview of the research method and the
reproduction package files that correspond to each step. The re-
production package is made available both in the supplementary
material and online! to replicate the entirety of this research.

—
Key: (Manual Step) < Automated Step > | Artifact |

Search Validation

o
Phase Search query creation || Query String
00.txt
Sampling
02.py

3068 abstract:
abstracts
Database search
01.csv
Manual extraction
50 abstracts

Extract;
raction LLM extraction 768 tools
Phase —]
04.py 05.json
Selection 5 el
ools
Phase Manual tool selection j—1 22 tools
06.yaml)
03.json
Analysis e N)
Code matching Tool relations R
Phase Code > Compare extractions
07.py 08.json
Reporting

Figure 1: Overview of research method

I

2.1 Search Phase

To build our initial set of tools, we used a large population of
research studies as basis. For that, we searched Scopus2 with the
following query:
TITLE-ABS-KEY (
cloud AND tool AND (
observability OR logging OR monitoring

)
) AND LIMIT-TO(SUBJAREA,"COMP")

Thttps://github.com/Misterio77/0SS-Cloud-Observability
Zhttps://scopus.com

Fontes et al.

Our goal includes, but is not limited to, finding more niche tools
and thus benefits from a large and diverse sample size. To avoid
missing relevant tools, this search query intentionally did not try
to exclude research software nor proprietary software, thus leaving
this filtering for manual selection, as described in Section 2.3.

The search resulted in a set of 3068 studies, which were exported
into a CSV file in the following format: "Title","Year","DOI",
"Link","Abstract". This data is available in the reproduction
package as @1-scopus-search-results.csv.

2.2 Extraction Phase

This is a problem in the class of Named-entity Recognition (NER)
[10], albeit a single-class one. As the intent is to extract tool names
mentioned in the studies, a method that can be aware of context,
such as BERT or an LLM, is ideal. For this extraction, due to ease
of access and previous experience, we decided to use an LLM to
extract the tools from abstracts.

The reason for using the abstracts alone, besides ease of automa-
tion and availability, is that an abstract can fit together with the
LLM’s prompt in most models’ context windows, drastically re-
ducing hallucinations and costs when compared to the full texts.
The main risk from this strategy is missing tools that only appear
in the full text; hence, we mitigated it in two ways: (i) by using a
large amount of studies; and (ii) by calibrating the prompt using a
validation set, as discussed next.

2.2.1 Validation sampling and extraction. A validation set of 50
manually extracted abstracts was created. This set was used to
estimate precision and recall of the overall dataset and to calibrate
the LLM prompt used for extraction. The first attempt was by
randomly sampling abstracts. After analysis, it was evident that
the negatives (i.e., abstracts not containing any observability tool
names) made up around 80-90% of the corpus, making the data very
sparse. To get a set with a higher share of positives, we decided to
use a combination of keyword spotting (by matching the text with
a few known observability tools®) and random sampling. The set is
composed of 42 studies originating from keyword match and 8 from
random sampling. The script that reproduces this step is available
in the reproduction package as 02-validation-set-script.py.
The authors then manually extracted tools from these abstracts,
inserting the annotations into the dataset, which is available in the
reproduction package as @3-validation-set-results. json. The
validation set was used to evaluate and refine the study, including
the search query and LLM prompt, as discussed next.

2.2.2 LIM extraction. The extraction method consists of feeding
each study’s abstract to an LLM (in this case, DeepSeek-V3 [5]),
with the following prompt:

“ You will receive a paper abstract that relates to cloud observabil-
ity/monitoring/logging/tracing tools. Enumerate all observability/-
monitoring/logging/tracing tools mentioned in it. Respond with the
names separated by comma: tool1,tool2,tool3. If there are no
relevant tools, reply with an empty string.”

This prompt was the result of several rounds of evaluation and
calibration. By using the LLM to extract tools from the validation

3 grafana, prometheus, graphite, opentelemetry, elasticsearch, fluentd, kibana, logstash,
jaeger, influxdb, ceilometer

https://github.com/Misterio77/OSS-Cloud-Observability
https://scopus.com

Open Source Software Ecosystem for Cloud Observability: An Overview and Trends

set, we achieved recall 97%, precision 69%, and F; 80% (66 true
positives, 30 false positives, and only 2 false negatives). The key
metric here is the recall, as this LLM extraction is then used for a
manual selection, so it is crucial that false negatives are minimized,
even if this leads to more false positives.

From the full set, the LLM extracted a total of 768 candidate
tools, originating from 774 studies (25% of 3068 total studies). This
step can be fully reproduced via the script @4-11m-extraction-
script.py, and its results are available in 05-11m-extraction-
results. json. These tools were then manually selected, as detailed
in Section 2.3.

2.3 Selection Phase

We manually examined the 768 candidate tools and the studies
they appeared on and selected the tools according to the following
selection criteria:

e Inclusion Criteria (IC):

- IC1: The tool is/was a piece of Free/Open Source Soft-
ware, meaning licensed under one of the OSI*’s or FSF>’s
approved software licenses; and

— IC2: The tool is used/discussed as part of a cloud observ-
ability solution.

e Exclusion Criterion (EC):

— EC1: The tool is a piece of research software and not
otherwise available as an actual FOSS project on the web
or mentioned anywhere else on the web besides the studies
that introduce it.

By applying this criteria, we selected a total of 45 tools, as shown
in Table 1. Besides the tool name and studies it originates from, we
also annotated each tool with:

(1) A list of its relevant software repositories (e.g., Git, SVN),
located via web searches.
(2) Its main functions/roles, also located via web searches, and
organized roughly based on [6]:
(a) instrumentation (Instrumentation): allows systems to
export observability data (e.g. libraries, exporters).
(b) collection/processing (Data Collector): aggregates, pro-
cesses, and collects data.
(c) storage (Data Backends): long-term storage, querying.
(d) visualization/alerting/analysis (Analysis/Visualiza-
tion): understanding of the system, root cause analysis,
discovering “unknowns”.

This phase was conducted by the first author over the course of
a few days, with web searches and consensus meetings with the
second author to ensure correctedness. This data is available in the
reproduction package as 06-tool-selection-manual.yaml. This
is part of RQ1 and further explored in Section 3.1.

2.4 Analysis Phase

Our main goal in this phase is to find the relations between the
tools, to answer the RQ2. For that, we downloaded their source code,
and, for each tool, programmatically matched occurrences of every
other tools’ names in its codebase. This step can be reproduced

“https://opensource.org/licenses
Shttps://gnu.org/licenses/license-list. html

SESoS °26, April 12-18, 2026, Rio de Janeiro, Brazil

using @7-tool-code-occurrences-script.py and its results are
available as 08-tool-code-occurrences-results. json.

These numbers represent how much a tool’s codebase is aware of
and/or coupled to each other tool, and includes integration features,
documentation, tests, dependencies, etc. This is part of RQ2 and is
further explained in Section 3.2. A deeper study on the nature of
each individual relation is out of scope for this study, but we briefly
discuss this in Section 4.3.

3 Results

This section focuses on answering the two RQs defined in Section 1.

3.1 OSS tools in Cloud Observability Stacks

We selected 45 tools, which can be tracked back to the abstracts of
111 studies in our set (4% of 3068 from the initial search). Table 1, in
the Appendix, contains the full set of selected tools, the amount of
abstracts they appear on, and our annotations on the main functions
each of them provide in an observability stack (as per [6]). As it can
be seen from the table, there is a long tail of tools with presence
in a single study each, while a few tools such as Thingspeak and
Prometheus dominate the discourse.

Figure 2 visualizes how frequently each tool appears, in number
of studies. Notoriously, Prometheus and Grafana are very frequently
mentioned in the studies, which correspond to our expectations
and industry experience, where the two are frequently combined
for a basic metric+visualization stack. Thingspeak being highly
mentioned, while unexpected, is possibly an indicator that IoT
research frequently intersects with cloud computing.

thingspeak |21
prometheus |18
grafana 115
nagios |10
elasticsearch 17
zabbix | 6
kafka []
thingsboard
snort
kibana
kepler
ganglia

%»&%r&-&ﬂkl

ceilometer
xdmod

wazuh
influxdb
skydive
scaphandre
opentelemetry
fluentd

www!

" [0oag

5 10 15 20 25

Figure 2: Number of studies mentioning each tool (Tools
appearing on a single study were omitted)

Figure 3 shows how frequent each role (as defined in Section 2.3)

is. Some tools have multiple roles (e.g. Grafanahasboth visualization

and alerting). We can see a very high frequency in the collection

https://opensource.org/licenses
https://gnu.org/licenses/license-list.html

SESoS 26, April 12-18, 2026, Rio de Janeiro, Brazil

role; besides dedicated collectors, most instrumentation and pro-
cessing tools seem to have some sort of collection/aggregation
mechanism built-in.

collection 130
instrumentation |12
visualization 12
processing
alerting

analysis
storage

]|

o

5 10 15 20 25 30 35

Figure 3: Number of tools per role (Some tools have multiple)

Figure 4 shows the yearly distribution of studies with at least
one selected tool. We can see that there is a growing trend, possibly
indicating the increased interest in the area. Our data contains
studies from up until October 2025, thus 2024 studies are slightly
more present than 2025 in the graph.

25

20 18
15

10 8 = 8

ot
IS

12 2
= Mo

N oS
NN
NES

][\)

Yo 0N D9SN & 0w b
I QRO
FTFTFFTFITITSF

2010
2

Figure 4: Yearly study distribution

Answering RQ1: Prometheus is ubiquitous in the cloud ob-
servability ecosystem. Nagios, Grafana and ElasticSearch are
also frequent appearances. Thingspeak is an interesting outlier,
representing the intersection with IoT. Collection function-
ality is the most frequent, followed by instrumentation and
visualization.

3.2 Combinations of OSS Tools in Cloud
Observability Stacks

To better visualize the relation data, we conducted a network anal-
ysis in it, with the results shown in Figure 5. For this figure, we
represent each tool as a node.

The graph edges are directed and weighted, serving as visual-
ization of how much a tool X relates to another tool Y. This is
obtained, as described by Section 2.4, through matching Y’s name
on X’s codebase, and represents relations such as integration fea-
tures, comments mentioning a borrowed snippet, documentation
(usually comparing an alternative tool or documenting integration),

Fontes et al.

tests, and usage as libraries. As the codebase sizes vary, the edge
weights are normalized with the other edges originating from the
same node. Edges whose weights were lower than 0.05 (i.e. 5%
of all keyword matches that codebase has) were hidden from the
visualization, for improved visibility.

The node size is derived from the sum of the weights of connec-
tions with that node as destination, interpreted as how important
the tool is to the ecosystem. The node colors are a visualization
of community clustering, that groups tightly connected nodes to-
gether.

We can see in the figure how many tools relate to Prometheus;
due to its format being the dominant one for metrics, most other
tools export metrics that are compatible with Prometheus. Things-
peak is very disconnected from the other tools, which hints that
IoT tooling tends to be more standalone. JoularyX and Powerjoular,
a pair of tools built together to, respectively, collect and aggre-
gate power consumption data, also appear isolated yet tightly cou-
pled together. Some stacks can be clearly seen being formed in
the figure: the ElasticSearch+Logstash+Kibana ELK stack, and the
Telegraf +InfluxDB+Chronograf +Kapacitor TICK stack being some
obvious ones. The directionality of the relations is also represen-
tative of how the tools behave, with Grafana heavily relating to
Prometheus (it has a Prometheus datasource built-in [2]), but not
the other way around (i.e. Prometheus knows almost nothing about
Grafana).

Answering RQ2: some common stacks appear in this re-
search, such as ELK and TICK. Some tools are highly inte-
grated in the ecosystem, with Prometheus being a central piece.
Thingspeak is an outlier and shows that IoT tends toward stan-
dalone solutions.

4 Discussion

This section discusses our main findings, the threats to the validity
of this study, and future work.

4.1 Main Findings

The main findings resulting from our investigation of OSS tools for
cloud observability are:

¢ Quantitative code matching can be a good proxy to find
relations between codebases. Our approach of matching
the names of each tool on other tools’ codebases worked.
Figure 5 clearly shows clustering between well-known com-
binations: ElasticSearch+Logstash+Kibana (ELK stack), Tele-
graf +InfluxDB+Chronograf +Kapacitor (TICK stack). We can
also see library usage (e.g., OpenTelemetry), the most ubiqui-
tous tools (Prometheus) being highly referenced to, as well
as some disconnected clusters (e.g., Powerjoular+ JoularjX,
Thingspeak). Notably, our approach is very accurate in mod-
eling directed relations, such as Grafana integrating with
Prometheus [2], but not the other way around. Finally, our
approach is heavily automated, and thus scales much better
than the alternatives that involve manual labeling or more
qualitative analysis. It should be interesting to apply the

Open Source Software Ecosystem for Cloud Observability: An Overview and Trends

SESoS °26, April 12-18, 2026, Rio de Janeiro, Brazil

ularjx
powerjo
thingspeak
elasticsearc
snort:
RLOPI
Qaeger
0 ,
4‘}‘?’
grafana " entsdb
94,4 5 ollect|

S g ;
tetra cadVIs g [
\é},“fv H acti

£ % ‘ b & ‘

rometheus ‘—'— —~7 > { nagios
? - “Q»’:‘i’ " ‘ —Z7noss anglia
Z | thipgsboard 3
N '(/‘-h‘— W a 7//
xdm P N~ Hllectd
.’V ‘ >
systemfap scgghandreNy o
w nftdeta chn(Eraf
kepler
luentd
tracgkompass

Figure 5: Relations between tools, clustered and weighted by relative code occurrence

code matching technique to explore the relations between
projects in different Software Ecosystems.

Some tools are de-facto standards, bringing interop-
erability but risking over-reliance. It is interesting to
see how Prometheus has become so ubiquitous that there
are references to it in the code of basically every single
cloud observability tool that exists. If a software exports
metrics, it is probably in the Prometheus exposition format.
Although Prometheus’s community-based governance brings
some safety, over-reliance on a single implementation can
be problematic, thus bringing the need of standardization.
OpenTelemetry has recently emerged as a more standardized
framework for different aspects of observability (including
compatibility with the Prometheus exposition format) [3],
and it is interesting to see adoption grow. The connection
graph we built can be a helpful metric to determine which
OSS tools are becoming critical, thus should be prioritized
for standardization and/or alternative implementations by
OSS communities and funding agencies.

0SS and standardization can challenge proprietary
lock-in. Our data extraction step yielded some proprietary
software (e.g. CloudWatch, AzureWatch), most of them spe-
cific to a single cloud vendor. These were, however, often
accompanied by OSS tools, a reminder that some of the OSS
tools are so ubiquitous that vendors are effectively forced to
implement support for them, further showing the strength

4.2

OSS has in standardization and interoperability. Practition-
ers should consider prioritizing OSS when adopting observ-
ability tooling that needs to interoperate, for example, in
multi-cloud scenarios.

e The line between an observability tool and a tool that
can be used for observability can be thin. During our
manual selection step, some tools were difficult to classify.
For example, Kafka is not necessarily built for observabil-
ity solutions, but its usage is so frequent that it becomes
clear that it should be labeled as such. But what about other
message queues? Or storage systems? Further research is
required to effectively draw this line.

Threats to Validity

As with any secondary studies, threats to validity must be consid-
ered as well as mitigation actions, as discussed below:

¢ Not all tools are mentioned in scientific literature. There
are a few tools the authors know about from their exposure
to cloud observability solutions that did not appear in any
of the abstracts our search yielded. This includes Mimir,
Loki, Graphite, and Thanos. This means that including other
datasources and analysis techniques could provide a more
complete set of tools. This is an acknowledged limitation in
our study.

Sparsity of dataset. The abstract dataset is very sparse,
making validation harder. Only 4% of the total corpus in-
cludes at least one tool from the final selection. We mitigated
this by building a validation set that included both known
tools as well as randomly sampled studies.

SESoS 26, April 12-18, 2026, Rio de Janeiro, Brazil

e LLM bias. Although we calibrated the prompt to minimize
false negatives, the LLM can be biased towards more well-
known tools. We mitigated this by inspecting the abstracts
of all 774 extracted studies (i.e. studies from which the LLM
extracted at least one tool), this same inspection is, however,
not possible in the negative population, as it is very large.
The mitigation provided by the validation set (Section 2.2.1),
with a high recall value, is considered sufficient.

e Abstracts may not contain every tool relevant to the
work. Using only the abstracts (as opposed to the fulltexts)
can leave out relevant tools. This is somewhat mitigated by
the large corpus of studies we used, and is a tradeoff we
accepted to build a more automated research method.

e Code matches can contain false positives. Some code-
bases, such as ElasticSearch’s, contain files such as wordlists.
This is mitigated by making the weights relative and dis-
carding less relevant edges. Future research could involve
additional heuristics.
Code matches can contain transitive relations. Transi-
tive dependencies/integrations are also frequently matched,
which might be an issue if the intention is to only model
direct ones. This can be partially mitigated by excluding
lockfiles. We decided to not qualitatively differentiate the
nature of each relation, so this is considered out of scope for
this paper.

e Human error during selection. As with any classification
based on human decisions, our selection phase (Section 2.3)
could contain errors or be biased. This was mitigated by
consensus between the authors and by carefully researching
each candidate tool, as detailed in the section.

4.3 Future Work

Based on the results of our investigation, we can suggest the fol-
lowing future work:

¢ Qualitative analysis on the relations. Our approach with
the relations between tools was very quantitative, with no
regard for the nature of the code nor any attempt to filter
false positive matches. By conducting a more qualitative
analysis of each individual relation identified, one could gain
a better understanding of the relation between tools, and
how good of a proxy the quantitative analysis is.

e Other datasources besides academic studies. Although
useful for casting a wide net, academic studies might not be
enough to locate all tooling, specially emerging ones. Other
methods such a multivocal literature reviews to find the set
of tools might be interesting to explore.

e Applying our method to other ecosystems. The code key-
word matching approach is simple, very scalable, and seems
to provide good results. One could apply this technique to
other ecosystems.

o A better definition of observability tooling is needed.
Some tools are used in observability but do not define them-
selves as observability tools. Some better heuristic to make
this classification could be explored.

o Other heuristics for finding relations. Research on more
heuristics for the relations can be interesting. For example,

Fontes et al.

by analyzing the common contributors between two projects,
one could measure integration and/or cross-pollination be-
tween different software projects.

5 Conclusions

As IT operations shift into an Engineering activity, Observability
also grows as an important topic for SE research. In our work, our
objective was to provide an accurate starting point to researchers
exploring the OSS Observability ecosystem. Our research shows
a selection of 45 OSS tools, a categorization on their functionality,
and a quantitative measure of the relations between one other. A
few tools are shown to have a central role in the ecosystem, such as
Prometheus, others appear clustered in stacks, such as ELK (Elastic-
Search, Logstash, Kibana) and TICK (Telegraf), InfluxDB, Chronograf;
Kapacitor). We also showcase some outliers, such as Thingspeak
which does not relate to any other tool we have researched, as
well as tools that appear isolated as a pair, such as JoularJX and
PowerJoular.

Our methodology is very automated and can be helpful for any
exploratory study of a Software Ecosystem where source code is
available for analysis. This sort of overview can be helpful for
practitioners to locate additional components their observability
stack might be missing, as well as to discover alternatives for tools
they are using.

Acknowledgments

This study was financed by Sdo Paulo Research Foundation (FAPESP)
(2023/00488-5), National Council for Scientific and Technological
(CNPq) (313245/2021-5), Coordenacdo de Aperfeicoamento de Pes-
soal de Nivel Superior (CAPES) (001), and by ITEA4 and RVO under
grant agreement No. 22035 MAST (https://itead.org/project/mast.
html).

References

[1] [n.d.]. CNCF Landscape. https://landscape.cnf.io Accessed 26-10-2025.

[2] [n.d.]. Prometheus data source - Grafana Documentation. https://grafana.com/
docs/grafana/latest/datasources/prometheus/ Accessed 30-10-2025.

[3] 2024. Prometheus and OpenTelemetry - Better Together. https://opentelemetry.
io/blog/2024/prom-and-otel/

[4] B.Beyer, C. Jones, J. Petoff, and N.R. Murphy. 2016. Site Reliability Engineering:
How Google Runs Production Systems. O’Reilly. https://books.google.com.br/
books?id=81UrjwEACAA]

[5] DeepSeek-Al 2024. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL]
https://arxiv.org/abs/2412.19437

[6] Joanna Kosinska, Bartosz Bali§, Marek Konieczny, Maciej Malawski, and Stawomir
Zielinski. 2023. Toward the Observability of Cloud-Native Applications: The
Overview of the State-of-the-Art. IEEE Access 11 (2023), 73036-73052. doi:10.
1109/ACCESS.2023.3281860

[7] Grace A. Lewis. 2013. Role of Standards in Cloud-Computing Interoperability. In
2013 46th Hawaii International Conference on System Sciences. 1652-1661. doi:10.
1109/HICSS.2013.470

[8] Nikolaos Loutas, Eleni Kamateri, Filippo Bosi, and Konstantinos Tarabanis. 2011.
Cloud Computing Interoperability: The State of Play. In 2011 IEEE Third In-
ternational Conference on Cloud Computing Technology and Science. 752-757.
d0i:10.1109/CloudCom.2011.116

[9] Sina Niedermaier, Falko Koetter, Andreas Freymann, and Stefan Wagner. 2019. On

observability and monitoring of distributed systems—-an industry interview study.

In International Conference on Service-Oriented Computing. Springer, 36-52.

Kalyani Pakhale. 2023. Comprehensive Overview of Named Entity Recognition:

Models, Domain-Specific Applications and Challenges. arXiv:2309.14084 [cs.CL]

https://arxiv.org/abs/2309.14084

Rodolfo Picoreti, Alexandre Pereira do Carmo, Felippe Mendonca de Queiroz,

Anilton Salles Garcia, Raquel Frizera Vassallo, and Dimitra Simeonidou. 2018.

Multilevel observability in cloud orchestration. In 2018 IEEE 16th Intl Conf on

[10

[11

https://itea4.org/project/mast.html
https://itea4.org/project/mast.html
https://landscape.cnf.io
https://grafana.com/docs/grafana/latest/datasources/prometheus/
https://grafana.com/docs/grafana/latest/datasources/prometheus/
https://opentelemetry.io/blog/2024/prom-and-otel/
https://opentelemetry.io/blog/2024/prom-and-otel/
https://books.google.com.br/books?id=81UrjwEACAAJ
https://books.google.com.br/books?id=81UrjwEACAAJ
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1109/ACCESS.2023.3281860
https://doi.org/10.1109/ACCESS.2023.3281860
https://doi.org/10.1109/HICSS.2013.470
https://doi.org/10.1109/HICSS.2013.470
https://doi.org/10.1109/CloudCom.2011.116
https://arxiv.org/abs/2309.14084
https://arxiv.org/abs/2309.14084

Open Source Software Ecosystem for Cloud Observability: An Overview and Trends SESoS °26, April 12-18, 2026, Rio de Janeiro, Brazil

Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelli- A Selected Tools

gence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and

Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).

IEEE, 776-784. Table 1: Selected Tools
[12] Frank van der Linden, Bjorn Lundell, and Pentti Marttiin. 2009. Commodification

of Industrial Software: A Case for Open Source. IEEE Softw. 26, 4 (jul 2009).

doi:10.1109/MS.2009.88 Tool Studies Roles
thingspeak 21 collection, storage
prometheus 18 instrumentation, collection, alerting
grafana 15 visualization, alerting
nagios 10 collection, alerting
elasticsearch 7 storage
kafka 6 processing
zabbix 6 collection, alerting, visualization
ceilometer 4 collection
ganglia 4 collection, processing, visualization
kepler 4 instrumentation
kibana 4 visualization
snort 4 collection
thingsboard 4 collection, processing, visualization,
analysis
influxdb 3 storage, processing
wazuh 3 instrumentation, alerting, visualization,
collection, analysis
xdmod 3 instrumentation, collection, analysis
fluentd 2 collection
opentelemetry 2 instrumentation, collection
scaphandre 2 instrumentation, collection
skydive 2 collection
cacti 1 collection, visualization
cadvisor 1 collection
chronograf 1 visualization
collectd 1 instrumentation, collection
collectl 1 collection
elastic beats 1 instrumentation
flume 1 collection, processing
jaeger 1 collection, visualization
joularjx 1 instrumentation, collection
kapacitor 1 processing, alerting
logstash 1 collection, processing
monasca 1 storage, processing
netdata 1 collection, alerting
net-snmp 1 collection
ntopng 1 instrumentation, collection
opentsdb 1 storage
powerjoular 1 collection
sysdig 1 instrumentation
syslog-ng 1 collection
systemtap 1 instrumentation
telegraf 1 processing, collection
tetragon 1 collection, analysis
tracecompass 1 visualization, analysis
Zenoss 1 collection, visualization
1

zipkin storage, visualization, analysis

https://doi.org/10.1109/MS.2009.88

	Abstract
	1 Introduction
	2 Research Method
	2.1 Search Phase
	2.2 Extraction Phase
	2.3 Selection Phase
	2.4 Analysis Phase

	3 Results
	3.1 OSS tools in Cloud Observability Stacks
	3.2 Combinations of OSS Tools in Cloud Observability Stacks

	4 Discussion
	4.1 Main Findings
	4.2 Threats to Validity
	4.3 Future Work

	5 Conclusions
	Acknowledgments
	References
	A Selected Tools

